

2-Bit Bidirectional Voltage-Level Translator for

Open-Drain and Push-Pull Applications

1. Feature

- No Direction-Control
- Data Rates24Mbps (Push-Pull)2Mbps (Open-Drain)
- 1.65V to 5.5V on A ports and 2.3V to 5.5V on B Ports (Vcca≤VccB)
- □ V_{CC} Isolation: If Either V_{CC} is at GND, Both Ports are in the High-Impedance State
- □ No Power-Supply Sequencing Required: Either V_{CCA} or V_{CCB} can be Ramped First
- I_{OFF}: Supports Partial-Power-Down Mode
 Operation
- Extended Temperature: -40°C to +85°C
- ☐ Latch-Up Performance Exceeds 100 mA
- ESD Protection:
 - 4-kV Human-Body Model (HBM)
 - 2-kV Charged-Device Model (CDM)

2. Applications

- Handset
- Smartphone
- Tablet
- Desktop PC

3. General Description

It uses two separate configurable power-supply rails, with the A ports supporting operating voltages from 1.65V to 5.5V while it tracks the $V_{\rm CCA}$ supply, and the B ports supporting operating voltages from 2.3V to 5.5V while it tracks the $V_{\rm CCB}$ supply. This allows the support of both lower and higher logic signal levels while providing bidirectional translation capabilities between any of the 1.8V,2.5V,3.3V and 5V voltage nodes.

When the output-enable(OE) input is low,all outputs are placed in the high-impedance state.

The SC0102 is designed so that the OE input circuit is supplied by Vcca.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The SC0102 is available in MSOP8L_3x3_0.65. It operates over an ambient temperature range of -40°C to +85°C

4. PACKAGE INFORMATION

PART NUMBER	PACKAGE	BODY SIZE
SC0102S	MSOP-8	3mm x 3mm

REV.0.2

Information furnished by SteadiChips is believed to be accurate and reliable. However, no responsibility is assumed by SteadiChips for its use, or for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SteadiChips

Functional Block Diagram

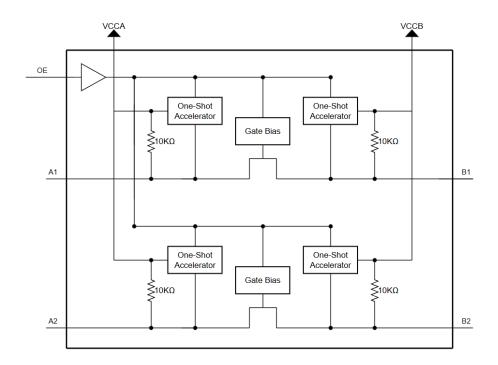
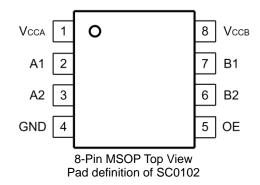



Figure 1.Block Diagram

5. PAD Definition

PAD Definition

Pin Functions: MSOP-8

Pin	Name	1/0	DESCRIPTION	
1	VCCA	POWER	A-port supply voltage. 1.65 V≤V _{CCA} ≤5.5 V and V _{CCA} ≤V _{CCB} .	
2	A1	I/O	Input/output A1. Referenced to V _{CCA} .	
3	A2	I/O	Input/output A2. Referenced to V _{CCA} .	
4	GND	GROUND	Device ground.	
5	OE	I	3-state output-mode enable. Pull OE low to place all outputs in 3-state mode. Referenced to V _{CCA} .	
6	B2	I/O	Input/output B2. Reference to V _{CCB} .	
7	B1	I/O	Input/output B1. Reference to V _{CCB} .	
8	VCCB	POWER	B-port supply voltage. 2.3 V≤V _{CCB} ≤5.5V.	

6. Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

SYMBOL	PARAMETER	MIN	MAX	units	
VCCA	Supply Voltage Range	-0.3	6.0	V	
VCCB	Supply Voltage Range		-0.3	6.0	V
		A port	-0.3	6.0	
V _I (2)	Input Voltage Range	B port	-0.3	6.0	V
.,	1	OE	-0.3	6.0	
14 (2)	Voltage range applied to any output in the high		-0.3	6.0	
Vo ⁽²⁾	impedance or power-off state	B port	-0.3	6.0	V
Vo ⁽²⁾⁽³⁾	Voltage range applied to any output in the high	A port	-0.3	Vcca+0.3	V
VOCAA	or low state	B port	-0.3	V _{CCB} +0.3	V
lıĸ	Input clamp current	Vı<0		-50	mA
Іок	Output clamp current	V ₀ <0		-25	mA
lo	Continuous output current	Continuous output current		±50	mA
	Continuous current through VCCA, VCCB or GN		±100	mA	
TJ	Junction Temperature			150	°C
T _{stg}	Storage temperature		-60	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Rating

Symbol	parameter	rating	units
	Human-Body Model (HBM)	±4000	V
V(ESD) Electrostatic discharge	Charged-Device Model (CDM)	±2000	V

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of VCCA and VCCB are provided in the recommended operating conditions table.

6.3 Recommended Operating Conditions

VCCI is the supply voltage associated with the input port. VCCO is the supply voltage associated with the output port.

PARAMETER		VCCA	VCCB	MIN	MAX	UNIT
Supply voltage ⁽¹⁾	VCCA			1.65	5.5	V
Supply voltage.	VCCB			2.3	5.5	V
	A nort I/Os	1.65 V to 1.95 V	2.3 V to 5.5 V	VCCI - 0.2	VCCI	
High-level input	A-port I/Os	2.3 V to 3.6 V	2.3 V 10 5.5 V	VCCI - 0.4	VCCI	V
voltage (V _{IH})	B-port I/Os	1.65 V to 3.6 V	2.3 V to 5.5 V	VCCI - 0.4	VCCI	V
	OE input	1.65 V to 3.6 V	2.3 V to 5.5 V	VCCI×0.8	5.5	
	A-port I/Os	1.65 V to 3.6 V	2.3 V to 5.5 V	0	0.15	
Low-level input voltage (V _{IL})	B-port I/Os	1.65 V to 3.6 V	2.3 V to 5.5 V	0	0.15	V
(***-2)	OE input	1.65 V to 3.6 V	2.3 V to 5.5 V	0	VCCI×0.25	
		1.65 V to 3.6 V	2.3 V to 5.5 V		10	
Input transition rise or fa	all rate(Δt/Δv)	1.65 V to 3.6 V	2.3 V to 5.5 V		10	ns/V
		1.65 V to 3.6 V	2.3 V to 5.5 V		10	
TA	Operating free	-air temperature		-40	85	℃

⁽¹⁾ VCCA must be less than or equal to VCCB.

⁽²⁾ The maximum V_{IL} value is provided to ensure that a valid V_{OL} is maintained. The V_{OL} value is V_{IL} plus the voltage drop across the pass gate transistor.

6.4 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (1) (2) (3)

PA	RAMETER	CONDITIONS	Vcca	V _{CCB}	TEMP	MIN	TYP	MAX	UNITS
V _{OH}	Port A output high voltage	I _{OH} = −20 μA V _{IB} ≥ V _{CCB} − 0.4V	1.65V to 5.5V	2.3V to 5.5V	Full	Vcca × 0.8			
V _{OL}	Port A output low voltage	IOL = 1mA VIB ≤ 0.15V	1.65V to 5.5V	2.3V to 5.5V	Full			0.4	V
V _{OH}	Port B output high voltage	IOH = -20 μA VIA ≥ VCCA - 0.4 V	1.65V to 5.5V	2.3V to 5.5V	Full	Vссв х 0.8			
V _{OL}	Port B output low voltage	IOL = 1mA VIA ≤ 0.15 V	1.65V to 5.5V	2.3V to 5.5V	Full			0.4	
lı	Input leakage	OE	1.65V to 5.5V	2.3V to 5.5V	+25°C	-1		1	μA
	current				Full	-1.5		1.5	
		A Ports	0V	0V to 5.5V	+25°C	-0.5		0.5	μA
I _{off}	Partial power down current	AFOILS	0 0	0 0 10 3.3 0	Full	-1		1	
	down current				+25°C	-0.5		0.5	μΑ
		B Ports	0V to 5.5V	0V	Full	-1		1	·
	High- impedance				+25°C	-1		1	
loz	State output current	State output OF-0V 1.65V to	1.65V to 5.5V	2.3V to 5.5V	Full	-1.5		1.5	μΑ
			1.65V to V _{CCB}	2.3V to 5.5V	+25°C			1.0	
Icca	V _{CCA} supply current	$V_1 = V_0 = \text{open } I_0$ = 0	5.5V	0V	Full			1.0	μΑ
	Carrent	_ 0	0V	5.5V	Full			-1	
			1.65V to V _{CCB}	2.3V to 5.5V	+25°C	5		15	
Іссв	V _{CCB} supply	$V_1 = V_0 = \text{open } I_0$ = 0	5.5V	0V	Full			-1	μΑ
	current	= 0	0V	5.5V	Full			1	
I _{CCA} + I _{CCB}	Combined supply current	V _I = V _{CCI} or GND I _O = 0	1.65V to V _{CCB}	2.3V to 5.5V	+25°C			16	μΑ
I _{CCZ}	V _{CCA} supply current	V _I = V _{CCI} or 0V I _O = 0, OE=0V	1.65V to V _{CCB}	2.3V to 5.5V	Full			1	μА
Iccz B	V _{CCB} supply current	V _I = V _{CCI} or 0V I _O = 0, OE=0V	2.3V to 5.5V	2.3V to 5.5V	Full			1	μA
Cı	Input capacitance	OE	3.3V	3.3V	+25°C		2.5		pF
	Input-to- output	A port	3.3V	3.3V	+25°C		5		
C _{IO}	internal capacitance	B port	3.3V	3.3V	+25°C		5		pF

⁽¹⁾ VCCI is the VCC associated with the input port.

⁽²⁾ VCCO is the VCC associated with the output port.

⁽³⁾ VCCA must be less than or equal to VCCB.

6.5 Timing Requiremen

VCCA=1.8V±0.15V

		V _{CCB} =2.5V ±0.2V	V _{CCB} =3.3V ±0.3V	V _{CCB} =5V ±0.5V	UNIT	
		TYP	TYP	TYP	UNIT	
Data rate	Push-pull driving	24	24	24	Mhno	
Dala Tale	Open-drain driving	2	2	2	Mbps	
Pulse	Push-pull driving (data inputs)	41	41	41	20	
duration(t _w)	Open-drain driving (data inputs)	500	500	500	ns	

VCCA=2.5V±0.2V

		V _{CCB} =2.5V ±0.2V	V _{CCB} =3.3V ±0.3V	V _{CCB} =5V ±0.5V	UNIT
		TYP	TYP	TYP	UNIT
Data rate	Push-pull driving	24	24	24	Mhara
Data rate	Open-drain driving	2	2	2	Mbps
Pulse	Push-pull driving (data inputs)	41	41	41	20
duration(t _w)	Open-drain driving (data inputs)	500	500	500	ns

VCCA=3.3V±0.3V

		V _{CCB} =3.3V ±0.3V	V _{CCB} =5V ±0.5V	UNIT	
		TYP	TYP	UNIT	
Doto roto	Push-pull driving	24	24	N/Ib m a	
Data rate	Open-drain driving	2	2	Mbps	
Pulse	Push-pull driving (data inputs)	41	41		
duration(t _w)	Open-drain driving (data inputs)	500	500	ns	

VCCA=5V±0.5V

		V _{CCB} =5V ±0.5V	UNIT
		ТҮР	UNIT
Data rate	Push-pull driving	24	Mhna
Data rate	Open-drain driving	2	Mbps
Pulse	Push-pull driving (data inputs)	41	20
duration(t _w)	Open-drain driving (data inputs)	500	ns

6.6 Switching Characteristics: V_{CCA}=1.8V±0.15V

over recommended operating free-air temperature range, $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	MIN	MAX	UNIT
			Durch or W. Link	$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		4.6	
			Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4.7	
tPHL	Propagation delay time			V _{CCB} = 5 V ± 0.5 V		5.8	
	(high-to-low output)		Open-drain driving	$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	3.1	9.0	
	, ,			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	4.2	11.9	
		A-to-B		$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	6.3	17.6	ns
				$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		6.8	
tPLH			Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		6.8	
	Propagation delay time			V _{CCB} = 5 V ± 0.5 V		7	
	(low-to-high output)			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	45	260	
			Open-drain driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	36	208	
				V _{CCB} = 5 V ± 0.5 V	27	198	
				$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		4.4	
			Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4.5	
tPHL	Propagation delay time			$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$		4.7	
	(high-to-low output)			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	1.9	5.3	
	(3 ,	B-to-A	Open-drain driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	4.4	ns
				$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	1.2	4.0	
	Propagation delay time (low-to-high output)	put)	Push-pull driving Open-drain driving	$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		5.3	
				$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4.5	
tPLH				$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$		1.8	
				$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	45	175	
				$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	36	140	
				$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	27	102	1
			_	$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		36	
^t en	Enable time	OE-to-A	or B	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		41	ns
				V _{CCB} = 5 V ± 0.5 V		43	
	5	05. 4	_	$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		77	
^t dis	Disable time	OE-to-A	or B	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		68	ns
				$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$		63	
				$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	3.4	9.5	
			Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.7	9.3	
trA	Input rise time	A-port		V _{CCB} = 5 V ± 0.5 V	2.2	8.0	ns
	,	rise time		$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	38	165	
			Open-drain driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	30	132	
				V _{CCB} = 5 V ± 0.5 V	22	95	1
				$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	4	10.8	
			Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	3.2	9.1	
trB	Input rise time	B-port		$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	4.3	7.6	ns
	F ==	rise time	rise time Open-drain driving	$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	34	145	
				$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	23	106	
				$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	10	58	

over recommended operating free-air temperature range, VCCA = $1.8 \text{ V} \pm 0.15 \text{ V}$ (unless otherwise noted)

	PARAMETER	RAMETER TEST CONDITIONS			MIN	MAX	UNIT
				$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	2	5.9	
			Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.9	6.0	
	Input fall time	A-port		$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	1.7	13.3	ns
t _{fA}	input fail time	fall time		$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	4.4	7.6	115
			Open-drain driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	4.3	6.4	
				$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	4.2	6.1	
				$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	2.9	7.6	
			Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.8	7.5	
+	Input fall time	B-port fall time		$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	2.8	8.8	ns
t _{fB}			Open-drain driving	$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	6.9	13.8	115
				$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	7.5	20.0	
				$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	10.2	32.3	
				$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		1	
t _{SK(O)}	Skew (time), output	Channel-	to-channel skew	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		1	ns
				$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$		1	
				$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	24		
			Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	24		
	Maximum data rata			$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	24		Mbps
	Maximum data rate			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	2		IVIDPS
			Open-drain driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2		
				$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	2		

6.7 Switching Characteristics: Vcca=2.5V±0.2V

over recommended operating free-air temperature range, V_{CCA} = 2.5 V ± 0.2 V (unless otherwise noted)

	PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT				
								$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		3.2	
			Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		3.3					
	Propagation delay time	A-to-B		$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$		3.4					
t _{PHL}	(high-to-low output)	A-10-B		$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	1.7	6.3					
			Open-drain driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2	6					
				$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	2.1	5.8					
				$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		3.5	ns				
		ne A-to-B	A-to-B Open-drain driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4.1					
	Propagation			$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$		4.4					
t _{PLH}	delay time (low-to-high output)			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	43	250					
				$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	36	206					
				$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	27	190					
		Propagation		$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		3					
			Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		3.6					
	Propagation delay time			$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$		4.3					
t _{PHL}	(high-to-low output)	D-10-A	B-to-A Open-drain driving	$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	1.8	4.7	ns				
				$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.6	4.2					
				V _{CCB} = 5 V ± 0.5 V	1.2	4.0					

over recommended operating free-air temperature range, $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	MIN	MAX	UNIT			
				$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		2.5				
	Propagation delay time (low-to-high output)		Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		1.8				
		B-to-A		$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$		1.5				
PLH		D-10-A		$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	44	170				
			Open-drain driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	37	140				
				V _{CCB} = 5 V ± 0.5 V	27	103				
				$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		36				
en	Enable time	OE-to-A	or B	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		41	ns			
				V _{CCB} = 5 V ± 0.5 V		43				
				$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		77				
t _{dis}	Disable time	OE-to-A	or B	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		68	ns			
				V _{CCB} = 5 V ± 0.5 V		63				
				$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	2.8	7.4				
	Input rise time		Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.6	6.6	ns			
		A-port		V _{CCB} = 5 V ± 0.5 V	1.8	5.6				
rA		rise time		$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	34	149				
			Open-drain driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	31	121				
				V _{CCB} = 5 V ± 0.5 V	24	89				
				$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	3.2	8.3	_			
		B-port rise time	Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.9	7.2				
				$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	2.6	6.2				
rB			Open-drain driving	$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	35	151	ns			
				$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	31	112	- -			
				$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	16.5	64				
		A-port			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	1.9	5.7			
			Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.9	5.5	1			
			A-port		A-port	A-port	A-nort		V _{CCB} = 5 V ± 0.5 V	1.8
fA	Input fall time	fall time		$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	4.4	6.9	ns			
			Open-drain driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	4.3	6.2	-			
				V _{CCB} = 5 V ± 0.5 V	4.2	5.8				
				$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	2.2	7.8				
			Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.4	6.7				
t _{fB}		B-port		$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	2.6	6.6				
	Input fall time	fall time		$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	5.1	8.8	ns			
			Open-drain driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	5.4	9.4				
				$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	5.4	11.2	1			
			1	$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		1				
SK(O)	Skew (time), output	Channel-	to-channel skew	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		1	ns			
(0)				$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$		1	-			

over recommended operating free-air temperature range, VCCA = $2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
		$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	24		
	Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	24		
Maximum data rate		$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	24		Mbps
Maximum data rate		$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	2		IVIDPS
	Open-drain driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2		
		$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	2]

6.8 Switching Characteristics: Vcca=3.3V±0.3V

over recommended operating free-air temperature range, V_{CCA} = 3.3 V ± 0.3 V (unless otherwise noted)

	PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
			Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		2.4	
	Propagation delay time		Push-pull unving	V _{CCB} = 5 V ± 0.5 V		3.1	
t _{PHL}	(high-to-low output)		0 1 1 11 1	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.3	4.2	
	, ,	A-to-B	Open-drain driving	$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	1.7	4.6	
		A-10-B	Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4.2	ns
	Propagation delay time		Push-pull unving	V _{CCB} = 5 V ± 0.5 V		4.4	
t _{PLH}	(low-to-high output)		Onen drain driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	40	204	
	, ,		Open-drain driving	$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	34	165	
			Duch pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		2.5	
	Propagation delay time		Push-pull driving	V _{CCB} = 5 V ± 0.5 V		3.3	
t _{PHL}	(high-to-low output)		Onen drain driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1	124	
	, 3	B-to-A	Open-drain driving	$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	1	97	ns
		D-10-A	Duch bull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		2.5	
	Propagation delay time (low-to-high output)		Push-pull driving	$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$		2.6	
t _{PLH}			Open-drain driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	3	139	
				$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	3	105	
+	Enable time	OF to A	D	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		41	
t _{en}	Enable time	OE-to-A	ס וס	$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	43		ns
+	Disable time	OE-to-A	or D	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		68	no
t _{dis}	Disable time	OE-10-A	ЛЬ	$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	63		ns
		A-port	Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.3	5.6	ns
	Input rise time		Push-pull unving	$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	1.9	4.8	
t _{rA}	input rise time	rise time		$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	25	116	
			Open-drain driving	$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	19	85	
			Push-pull driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.5	6.4	
	Input rice time	B-port	rusii-puii uiiviiig	$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	2.1	7.4	1
t _{rB}	Input rise time	rise time	Open drain driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	25	116	ns
			Open-drain driving	$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	26	116	
			Duck and date	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2	5.4	
+	Input fall time	A-port	Push-pull driving	$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	1.9	5.0	ne
t _{fA}	mput fall tillle	fall time	Open drain driving	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	4.3	6.1	ns
			Open-drain driving	$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	4.2	5.7	1

over recommended operating free-air temperature range, $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CONE		DITIONS	MIN	MAX	UNIT
		B-port		$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.3	7.4	
	land of fall times		Push-pull driving	$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	2.4	7.6	ns ns
t _{fB}	Input fall time	fall time		$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	5	7.6	
			Open-drain driving	V _{CCB} = 5 V ± 0.5 V	4.8	8.3	
	t _{SK(O)} Skew (time), output			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		1	
LSK(O)			el-to-channel skew	$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$		1	ns
	Post and disk		Decade weedl alwining	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	24		
Marrian alata sata	Push-pull driving		$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	24		Mbps	
	Maximum data rate	Maximum data rate Open-drain driving		$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2		iviops
				$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	2		

6.9 Switching Characteristics: VCCA = 5V±0.5 V

over recommended operating free-air temperature range, $V_{CCA} = 5 \text{ V} \pm 0.5 \text{ V}$ (unless otherwise noted)

	PARAMETER TEST COND		DITIONS	MIN	MAX	UNIT	
	Propagation		Push-pull driving	V _{CCB} = 5 V ± 0.5 V		5.6	
t _{PHL}	delay time (high-to-low output)		Open-drain driving	V _{CCB} = 5 V ± 0.5 V	1.6	4.6	
	Propagation		Push-pull driving	V _{CCB} = 5 V ± 0.5 V		2.0	ns
t _{PLH}	delay time (low-to-high output)		Open-drain driving	V _{CCB} = 5 V ± 0.5 V	24	155	
t _{en}	Enable time	OE-to-A	or B	$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$		43	ns
t _{dis}	Disable time	OE-to-A or B		V _{CCB} = 5 V ± 0.5 V		63	ns
	Input rise time		Push-pull driving	V _{CCB} = 5 V ± 0.5 V	2.7	5.0	
t _r		input rise time		Open-drain driving	V _{CCB} = 5 V ± 0.5 V	19	50
	lament fall time		Push-pull driving	V _{CCB} = 5 V ± 0.5 V	1.2	3.0	
t _f	t _f Input fall time	Input fall time	Open-drain driving	V _{CCB} = 5 V ± 0.5 V	1.8	3.0	ns
t _{SK(0}	t _{SK(O)} Skew (time), output Chann		el-to-channel skew	V _{CCB} = 5 V ± 0.5 V		1	ns
	Maximum data rate		Push-pull driving	V _{CCB} = 5 V ± 0.5 V	24		Mhna
		Open-drain		$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$	2		Mbps

7. Parameter Measurement Information

7.1 Load Circuits

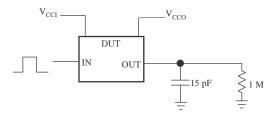


Figure 7-1. Data Rate, Pulse Duration, Propagation Delay, Output Rise-Time and Fall-Time Measurement Using a Push-Pull Driver

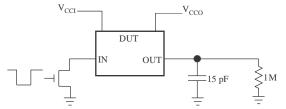
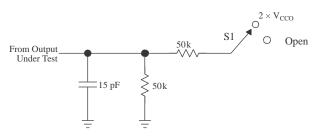



Figure 7-2. Data Rate, Pulse Duration, Propagation Delay, Output Rise-Time and Fall-Time Measurement Using an Open-Drain Driver

TEST	S1
t _{PZL} / t _{PLZ} (t _{dis})	2 × V _{CCO}
t _{PHZ} / t _{PZH} (t _{en})	Open

Figure 7-3. Load Circuit for Enable-Time and Disable-Time Measurement

- 1. tplz and tpHz are the same as tdis.
- 2. tpzL and tpzH are the same as ten.
- 3. V_{CCI} is the V_{CC} associated with the input port.
- 4. V_{CCO} is the V_{CC} associated with the output port.

7.2 Voltage Waveforms

The outputs are measured one at a time, with one transition per measurement. All input pulses are supplied by generators that have the following characteristics:

- PRR ≤ 10 MHz
- $Z_0 = 50 \Omega$
- dv/dt ≥ 1 V/ns



Figure 7-4. Pulse Duration

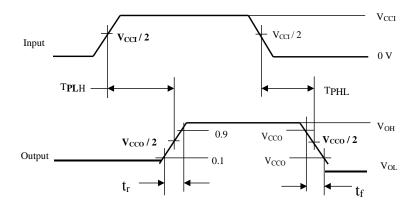
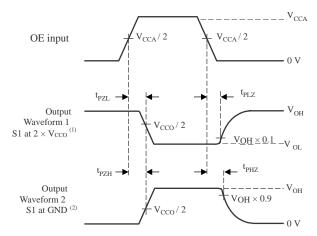



Figure 7-5. Voltage Waveforms Propagation Delay Times

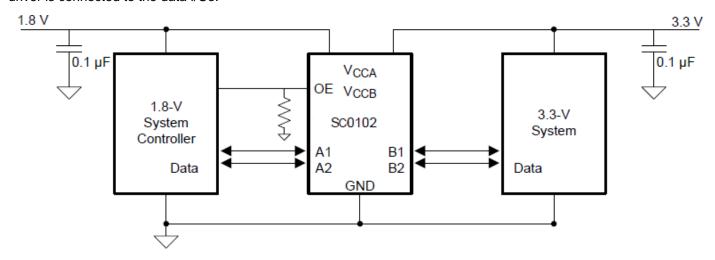

- A. Waveform 1 is for an output with internal such that the output is high, except when OE is high (see Figure 7-3).
- B. Waveform 2 is for an output with conditions such that the output is low, except when OE is high.

Figure 7-6. Enable and Disable Times

8. Application Information

The SC0102 device can be used to bridge the digital-switching compatibility gap between two voltage nodes to successfully interface logic threshold levels found in electronic systems. It should be used in a point-to-point topology for interfacing devices or systems operating at different interface voltages with one another. Its primary target application use is for interfacing with open-drain drivers on the data I/Os such as I2C, where the data is bidirectional and no control signal is available. The device can also be used in applications where a push-pull driver is connected to the data I/Os.

9. Feature Description

9.1 Architecture

The SC0102 architecture (see Figure 8) is an auto-direction-sensing based translator that does not require a direction-control signal to control the direction of data flow from A to B or from B to A. These two bidirectional channels independently determine the direction of data flow without a direction-control signal. Each I/O pin can be automatically reconfigured as either an input or an output, which is how this auto-direction feature is realized.

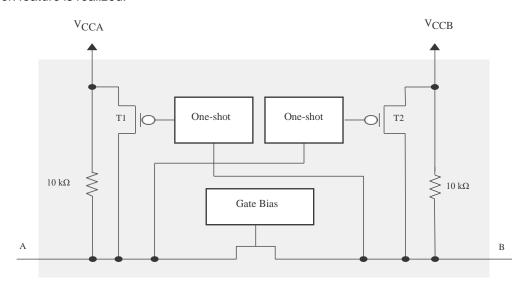


Figure 8-1. Architecture of a SC0104 Cell

9.2 Power Up

During operation, ensure that $V_{CCA} \le V_{CCB}$ at all times. During power-up sequencing, $V_{CCA} \ge V_{CCB}$ does not damage the device, so any power supply can be ramped up first.

9.3 Enable and Disable

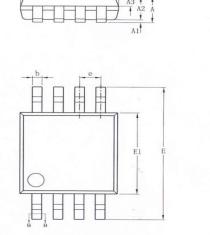
The SC0102 device has an OE input that disables the device by setting OE low, which places all I/Os in the high-impedance state. The disable time (t_{dis}) indicates the delay between the time when the OE pin goes low and when the outputs actually enter the high-impedance state. The enable time (t_{en}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after the OE pin is taken high.

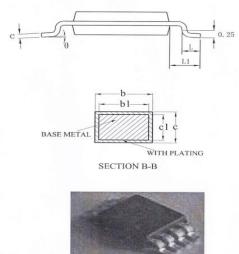
9.4 Pullup and Pulldown Resistors on I/O Lines

Each A-port I/O has an internal $10-k\Omega$ pullup resistor to V_{CCA} , and each B-port I/O has an internal $10-k\Omega$ pullup resistor to V_{CCB} . If a smaller value of pullup resistor is required, an external resistor must be added from the I/O to V_{CCA} or V_{CCB} (in parallel with the internal $10-k\Omega$ resistors).

9.5 Output Load Considerations

We recommend careful PCB layout practices with short PCB trace lengths to avoid excessive capacitive loading and to ensure that proper O.S. triggering takes place. PCB signal trace-lengths should be kept short enough such that the round-trip delay of any reflection is less than the one-shot duration. This improves signal integrity by ensuring that any reflection sees a low impedance at the driver. The O.S. circuits have been designed to stay on for approximately 30 ns. The maximum capacitance of the lumped load that can be driven also depends directly on the one-shot duration. With very heavy capacitive loads, the one-shot can time-out before the signal is driven fully to the positive rail. The O.S. duration has been set to best optimize trade-offs between dynamic ICC, load driving capability, and maximum bit-rate considerations. Both PCB trace length and connectors add to the capacitance that the RS0104 device output sees, so it is recommended that this lumped-load capacitance be considered to avoid O.S. retriggering, bus contention, output signal oscillations, or other adverse system level affects.


9.6 Input Driver Requirements


The fall time (t_{fA} , t_{fB}) of a signal depends on the output impedance of the external device driving the data I/Os of the SC0102 device. Similarly, the t_{PHL} and maximum data rates also depend on the output impedance of the external driver. The values for t_{fA} , t_{fB} , t_{PHL} , and maximum data rates in the data sheet assume that the output impedance of the external driver is less than 50 Ω .

PACKAGE OUTLINE DIMENSIONS

MSOP-8

SYMBOL	MILLIMETER					
STMBUL	MIN	NOM	MAX			
A	_	_	1.10			
A1	0.05	-	0.15			
A2	0.75	0.85	0.95			
A3	0.30	0.35	0.40			
b	0.28	_	0.36			
b1	0.27	0.30	0.33			
c	0.15	1,	0.19			
cl	0.14	0.15	0.16			
D	2.90	3.00	3.10			
E	4.70	4.90	5.10			
E1	2.90	3.00	3.10			
e		0.65BSC				
L	0.40	_	0.70			
LI).95REF				
θ	0		8°			

Version History:

Ver.	Date	Changes
Initial(V0.1)	2023-11-12	Init Version
V0.2	2024-12-20	Add Order number: SC0102S