

Hall Effect Isolated Current Sensor

FEATURES AND BENEFITS

- Single Chip Isolated Current Sensor
- Current Sensing Range:
 - ±20A, ±30A
 - +20A, +30A
- High Bandwidth: 120kHz
- Fast Response: t_{respons}<2.5us
- High Precision: ±1% FS
- Working Over Industry Temperature: -40℃~125℃
- Primary Conductor Resistance:
 <1.1mΩ
- Single Power Supply: 4.5V ~ 5.5V
- Small Footprint, Low Profile SOP-8 Package

Applications

- White Goods
- Small Motor Control
- Mobile Fast Charge Device

Description

SC4702 provides users with a high-precision current detection single chip scheme, which can detect DC or AC current. Because of its low cost, SC4702 can be widely used in household appliances and small electric vehicles. Its typical applications include: motor current detection, system power supply monitoring and key device current protection.

SC4702 includes linear Hall sensing circuit, temperature compensation circuit, etc. the detected current flows through the chip copper conductor and completes the current detection function by detecting the electromagnetic field generated by the measured current. Due to the use of magnetic field detection, SC4702 can achieve the highest isolation performance of 420Vpk (ul60950-1 ed.2). At the same time, because the detected current does not flow through any semiconductor device, its current path impedance is less than 1.1m Ω , which greatly reduces the power loss in the process of current detection.

The output of the voltage signal output terminal (VOUT) of the SC4702 changes with the current flowing through its current input / output terminal. When the current is zero, the output voltage value is equal to half of the chip supply voltage. The effective current detection bandwidth of SC4702 is adjustable up to 120kHz For applications requiring high-speed overcurrent protection, the SC4702 provides high-speed response with a delay of no more than 3.5 microseconds.

Due to the use of advanced linear Hall device sensing circuit and sensing algorithm, SC4702 can effectively attenuate the interference of environmental magnetic field, so as to greatly improve the detection accuracy of conductor current. The magnetic interference signal intensity caused by the magnetic field caused by the magnetic source more than 20mm from the center of the chip can be attenuated by more than 60dB.

SC4702 adopts SOIC8 package, which effectively reduces the area occupied by the device in application. At the same time, due to the effective temperature and compensation function, the current detection accuracy can be maintained within \pm 3% within the working temperature range of - 40 °C ~ 125 °C.

Information furnished by SteadiChips is believed to be accurate and reliable. However, no responsibility is assumed by SteadiChips for its use, or for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or

patent rights of SteadiChips.

Figure 1. Typical Application

PINOUT DIAGRAM

Figure 2. Pinout Diagram

TERMINAL LIST TABLE

Pin No	Name	Туре	Description
1, 2	llN1	In/Out	Terminals for Current Sensed
3, 4	IIN2	In/Out	Terminals for Current Sensed
5	GND	In/Out	Signal Ground Terminal
6	BWS	Output	Terminal for External Capacitor That Sets Bandwidth
7	VOUT	Output	Analog Output Signal
8	VCC	In/Out	Device Power Supply Terminal

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Power Supply Voltage	Vcc	-0.3	6.0	V
Output Voltage Range	V _{IO}	-0.3	Vcc+0.3	V
Filter Pin Voltage	VFILTER	-0.3	Vcc+0.3	V
Storage Temperature Range	T _{STG}	-60	150	°C
Max Junction Temperature	TJ		150	°C

ESD Ratings

Parameter	Classified	Value	Unit
Human Body Model (HBM)	Class 3B	8	kV
Charged Device Model (CDM)	Class C3	2	kV
Latch Up	Class IA		

ISOLATION CHARACTERISTICS

Parameter	Symbol	Notes	Value	Unit
Dielectric Strength Test Voltage	V _{ISO}	UL60950-1	2400	V _{RMS}
		(edition.2)		
Working Voltage for Basic	Maria	UL60950-1	420	Vpk
Isolation	V WVBI	(edition.2)	297	V _{RMS}
		Between primary and		
Clearance Distance	D _{cl}	secondary	3.9	mm
		conductors		
		Between primary and		
Creepage Distance	D_{cp}	secondary	3.9	mm
		conductors		

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Мах	Unit
Operation Temperature	T _A	-40		125	°C
Power Supply Voltage	V _{CC}	4.5	5.0	5.5	V

SELECTION GUIDE

Part Number	Current Sensing Range (A)	Sensitivity (mV/A)	Current Mode	Working Temperature T₄(℃)
SC4702SD20U	20	200	DC	-40 ~ 125
SC4702SD20B	±20	100	DC/AC	-40 ~ 125
SC4702SD30U	30	133	DC	-40 ~ 125
SC4702SD30B	±30	66	DC/AC	-40 ~ 125

COMMON ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
				Electrical	Chara	cteristics
VCC	Operate Voltage		15	5.0	5.5	V
	Range		4.5	5.0	0.0	v
ICC	Power Supply	Noload		12	14	mΔ
	Current			12		
CL	Output Capacitance	VOLIT to GND			10	nF
	Load					111
RL	Output Resistive	VOUT to GND	47			kO
	Load		···			1/22
RP	Primary Conductor	T₁=25℃		1.3		mO
	Resistance	IA- ∠ √ √		1.0		11132
TPOR	Power On Time	输出从0到90%		50		us
Tr	V _{OUT} Rising Time	T _A =25℃, CL=1nF		2		us
TPD		Delay between the input				
		signal reaching 90% to				
	V _{OUT} Delay Time	the output signal		2.5		us
		reaching 90%, T _A =25℃,				
		Terminal Open				
BW	Output Signal		Γ	120		
	Bandwidth			120		
		Input Reference Noise:				
IN	Noise	CF=4.7nF, CL=1nF,		50		mA(rms)
		BW=18KHz,T _A =25 ℃,				
VOH	Analog Voltago High			VCC-		
	Ahalog voltage night	Γ\L-4./ Γ\\2		0.3		v
VOL	Analog Voltage Low	RL=4.7KΩ		0.3		V

SC4702SD20U: PERFORMANCE CHARACTERISTICS: TA Range L, valid at TA = – 40°C to 125°C, VCC = 5 V, Unless Otherwise Specified

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
IP	Current Sensing Range		0		+20	А
Sens	Sensitivity	-5A≤IP≤+5		200		mV/A
V _{OUT} (Q)	Zero-Current Output Voltage	IP=0		0.5*VCC		V
V	Voltage Offect Error	IP=0,TA=-40℃~25℃		±10		mV
VOE	Vollage Offset Error	IP=0,TA=25℃~125℃		±15		mV
F		IP=5A,TA=-40℃ ~25℃		±2.5		%
Етот	i otal Output Error	IP=5A,TA=25℃ ~125℃		±3		%
_	Sonoitivity Error	IP=5A,TA=-40℃ ~25℃		±2		%
E _{SENS}		IP=5A,TA=25℃ ~125℃		±2.5		%

SC4702SD20B: PERFORMANCE CHARACTERISTICS: TA Range L, valid at TA = – 40°C to 125°C, VCC = 5 V, Unless Otherwise Specified

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
IP	Current Sensing Range		-20		+20	А
Sens	Sensitivity	-5A≤IP≤+5		100		mV/A
V _{OUT} (Q)	Zero-Current Output Voltage	IP=0		0.5*VCC		V
M	Valtage Offect Error	IP=0,TA=-40℃~25℃		±10		mV
VOE	Voltage Offset Error	IP=0,TA=25℃~125℃		±10		mV
F	Total Output Free	IP=5A,TA=-40℃ ~25℃		±2.5		%
Етот	i otal Output Error	IP=5A,TA=25℃ ~125℃		±4		%
F	Consitiuity Error	IP=5A,TA=-40℃ ~25℃		±2		%
Esens		IP=5A,TA=25℃ ~125℃		±3.5		%

SC4702SD30U: PERFORMANCE CHARACTERISTICS: TA Range L, valid at TA = – 40°C to 125°C, VCC = 5 V, Unless Otherwise Specified

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
IP	Current Sensing Range		0		+30	А
Sens	Sensitivity	-5A≤IP≤+5		133		mV/A
V _{OUT} (Q)	Zero-Current Output Voltage	IP=0		0.5*VCC		V
V	Valtage Offect Error	IP=0,TA=-40℃~25℃		±10		mV
VOE	Voltage Offset Error	IP=0,TA=25℃~125℃		±15		mV
F		IP=5A,TA=-40℃ ~25℃		±2.5		%
Етот	i otal Output Error	IP=5A,TA=25℃ ~125℃		±4		%
E	Sonoitivity Error	IP=5A,TA=-40℃ ~25℃		±2		%
E _{SENS}		IP=5A,TA=25℃ ~125℃		±3.5		%

SC4702SD30B: PERFORMANCE CHARACTERISTICS: TA Range L, valid at TA = – 40°C to 125°C, VCC = 5 V, Unless Otherwise Specified

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
IP	Current Sensing Range		-30		+30	А
Sens	Sensitivity	-5A≤IP≤+5		66		mV/A
V _{OUT} (Q)	Zero-Current Output Voltage	IP=0		0.5*VCC		V
M	Valtage Offect Error	IP=0,TA=-40℃~25℃		±10		mV
VOE	Voltage Offset Error	IP=0,TA=25℃~125℃		±10		mV
F	Total Output Free	IP=5A,TA=-40℃ ~25℃		±2.5		%
Етот	i otal Output Error	IP=5A,TA=25℃ ~125℃		±4		%
F	Sonoitivity Error	IP=5A,TA=-40℃ ~25℃		±2		%
Esens		IP=5A,TA=25℃ ~125℃		±3.5		%

PACKAGE OUTLING DRAWING

SOIC-8

	Dimens	sions In	Dimensions In		
Symbol	Millim	neters	Inches		
	Min	Max	Min	Max	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
В	0.330	0.510	0.013	0.020	
С	0.190	0.250	0.007	0.010	
D	4.780	5.000	0.188	0.197	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.300	0.228	0.248	
е	1.270	1.270 TYP) TYP	
L	0.400	1.270	0.016 0.050		
θ	0°	8°	0° 8°		

DISCLAIMER

SteadiChips reserves the right to make changes to its products and to discontinue products without notice. The applications information, schematic diagrams, and other reference information included herein is provided as a design aid only and are therefore provided as-is. SteadiChips makes no warranties with respect to this information and disclaims any implied warranties of merchantability or non-infringement of third-party intellectual property rights.

SteadiChips cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an SteadiChips product. No circuit patent licenses are implied.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

STEADICHIPS SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR OTHER CRITICAL APPLICATIONS.

Inclusion of SteadiChips products in critical applications is understood to be fully at the risk of the customer. Questions concerning potential risk applications should be directed to SteadiChips Co., Ltd.

SteadiChips semiconductors are typically used in power supplies in which high voltages are present during operation. High-voltage safety precautions should be observed in design and operation to minimize the chance of injury.

Trademark Information

© 2021 SteadiChips Co., Ltd. All rights reserved. SteadiChips is the trademark of SteadiChips Co., Ltd. All other trademarks and registered trademarks are the property of their respective companies.