

High Speed Rail to rail Output Comparator

1. Feature

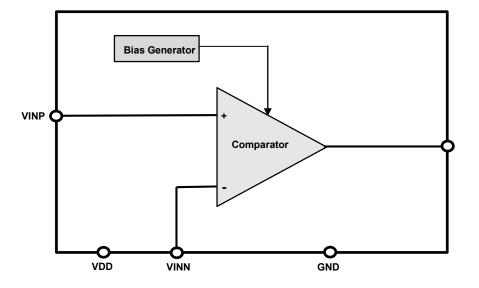
- □ 30ns propagation delay (@100mV Overdrive)
- □ Rail to Rail output, CMOS/TTL Compatible
- Internal Hysteresis to ensure clean switching
- DC coupled Input
- □ Offset voltage: +/-3mV Max.
- □ Low HYS voltage Temperature Drift: 5uV/°C.
- □ 2.7~5.5V power supply Voltage.
- Low quiescent current: 200uA
- □ Chip available in SOT23-5 Package

2. Applications

- □ High speed Line Receivers;
- □ Threshold Detector /Discriminators;
- Sampling Circuits;
- IR Receivers.

3. General Description

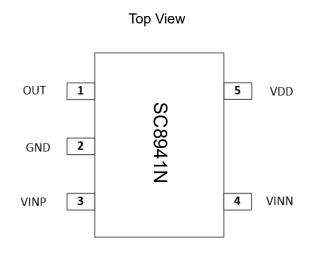
SC8941N is a high speed, low power dissipation comparator. It applies 30ns Propagation Delay at 100mV Overdrive voltage.


SC8941N is DC coupled normally, and It includes internal hysteresis(5mV) to ensure clean output switch, the HYS voltage has a ultra-low temperature drift

5uV/°C;

SC8941N consists of a high speed Class AB structure, which supports rail to rail output.

4. Device Information


	Part Number	Package	Body Size
F	SC8941N	SOT23-5	2.8mm x 2.92mm



Information furnished by SteadiChips is believed to be accurate and reliable. However, no responsibility is assumed by SteadiChips for its use, or for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SteadiChips.

5. Pin Configuration

Table. 1 Pin Function Description

PIN NO.	PIN NAME	TYPE	Description		
1	OUT	Output	Comparator Output PAD, High Voltage level is Pulled to VDD, Low Voltage is		
			GND;		
2	GND	GND	Ground pin. Connect to the most negative supply, ALL GND pads are		
			connected on die.		
3	VINP	Input	Video signal input PAD, DC coupled		
4	VINN	Input	DC Reference voltage input PAD;		
5	VDD	Power supply	Power supply (3.3V/5V) ,connect to positive voltage supply		

6. Specifications

6.1. Absolute Maximum Ratings

(Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.)

SYMBOL	PARAMETER	MIN	MAX	UNITS
Vdd	Power supply	-0.3	6	V
ТА	Operating ambient Temperature Range	-40	85	°C
Тѕтс	Storage Temperature	-65	150	°C

6.2. Recommended Operating Conditions

SYMBOL	PARAMETER	MIN	MAX	UNITS
V _{DD}	Device power supply voltage	2.7	5.5	V
TA	Operating ambient Temperature Range	-40	85	°C

6.3. Electrical Characteristics

1) DC Characteristics (FHD)

Specifications are at TA=+25 $^{\circ}$ C, , VDD=+2.7V \sim +5.5V Vin+=VDD, Vin-=1.2V RL=10Kohm CL=15pF (unless otherwise noted)

	DADAMETER	TEAT CONDITIONS	SPEC				
SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS	
VDD	Operating Supply Voltage		2.7	3.3	5.5	V	
VOS	Quiescent current	VDD =3.3V ,NO input& load		10		mA	
	Short to GND or VDD current	vin=VDD, Output to VDD		72		mA	
lsc		vin=VDD, Output to GND		85			
Vols	output offset Voltage	AC coupled Vin=0V, input referred		150		mV	
		DC coupled Vin=0V, input referred		100		mV	
Vон	Output Valtage High Swing	VDD=3.3V		2.8		V	
VOH	Output Voltage High Swing	VDD =5V		4.5		V	
Vol	Output Voltage Low Swing	VDD=3.3V/5V		224		mV	
Av	Output Voltage Gain			6		dB	
		f=50Hz		-58		dB	
PSRR	Power supply rejection ratio	f=1MHz		-39			

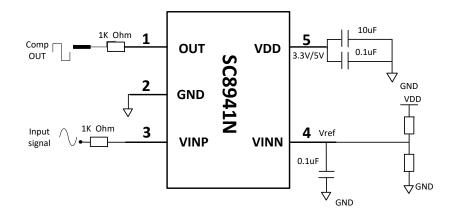
SYMBOL	PARAMETER	TEST CONDITIONS	SPEC				
STMBOL	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS	
VDD	Operating Supply Voltage		2.7	3.3	5.5	V	
VOS	Input Offset Voltage		-3	+/-0.15	+3	mV	
VOS_TC	Input Offset voltage Temp Drift		0.64	1.96	4.7	uV/°C	
Vhyst	Input Hysteresis Voltage		4	5	10.8	mV	
Vhyst_TC	Input Hysteresis Voltage Temp Drift			4.8	5.4	uV/°C	
		Differential		1.8		рF	
CIN	Input Capacitance	Common Mode		3.6			
RIN	Input Resistance			>100		GΩ	
IQ	Quiescent Current			200		uA	
ISC	Output short to VDD			25		mA	
Vin_cm	Common mode Input voltage		GND+0.2	-	VDD-0.2	V	
VOH	Output Voltage High Swing		VDD-0.3			V	
VOL	Output Voltage Low Swing				GND+0.3	mV	
CMRR	Common Mode Rejection Ratio			70		dB	
PSRR	Power supply rejection ratio			63		dB	
tR	Rising time	20%~80%		3.5		ns	
tF	Falling time	20%~80%		2.8		ns	
TPD+	Propagation Delay(Low to High)			30		ns	
TPD-	Propagation Delay(High to Low)			28.5		ns	
TPDSKEW	Propagation Delay Skew			1.5		ns	

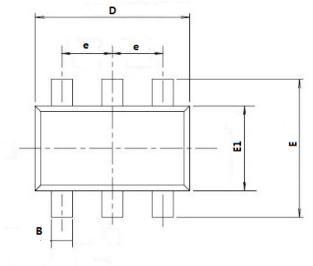
*Note1: The input offset voltage is the average of the input-referred trip points. The input hysteresis is the difference between the input-referred trip points.

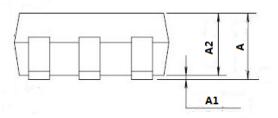
*Note2: Propagation Delay Skew is defined as: TPD+-TPD-;

High Speed Rail to Rail Output Comparator

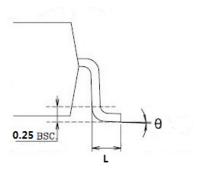
7. Typical Application

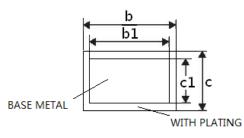



Fig. 2 Applications Circuits of SC8941N



Package Outline Dimensions


SOT23-5- 2.8mmx2.92mm


Symbol	Unit(mm)				
Symbol	MIN	NOM	MAX		
Α	-	-	1.35		
A1	0.04	-	0.15		
A2	1.00	1.10	1.20		
b	0.38	-	0.48		
b1	0.37	0.40	0.43		
С	0.11	-	0.21		
c1	0.10	0.13	0.16		
D	2.72	2.92	3.12		
E	2.60	2.80	3.00		
E1	1.40	1.60	1.80		
e	0.95BSC				
θ	0°	-	8°		
L	0.30	-	0.60		

SECTION B

EVISION HISTORY

DATE	REVISION	CHANGES	
	1.0	Initial Release.	
2022-4-16	1.2	Update the document template.	

DISCLAIMER

SteadiChips reserves the right to make changes to its products and to discontinue products without notice. The applications information, schematic diagrams, and other reference information included herein is provided as a design aid only and are therefore provided as-is. SteadiChips makes no warranties with respect to this information and disclaims any implied warranties of merchantability or non-infringement of third-party intellectual property rights.

SteadiChips cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an SteadiChips product. No circuit patent licenses are implied.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

STEADICHIPS SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR OTHER CRITICAL APPLICATIONS.

Inclusion of SteadiChips products in critical applications is understood to be fully at the risk of the customer. Questions concerning potential risk applications should be directed to SteadiChips Co., Ltd.

SteadiChips semiconductors are typically used in power supplies in which high voltages are present during operation. High-voltage safety precautions should be observed in design and operation to minimize the chance of injury.

Trademark Information

© 2020 SteadiChips Co., Ltd. All rights reserved. SteadiChips is the trademark of SteadiChips Co., Ltd. All other trademarks and registered trademarks are the property of their respective companies.

Contact Information

Web: <u>http://www.steadichips.com</u>
E-mail: <u>sales@steadichips.com</u>
Phone: (86) 510-81819665
Fax: (86) 0510-81819676
SteadiChips Co., Ltd. 1402 Jingyuan International Building A, No. 2 Xiangjiang Road, Wuxi, China 214142