

One Channel FHD Video Filter

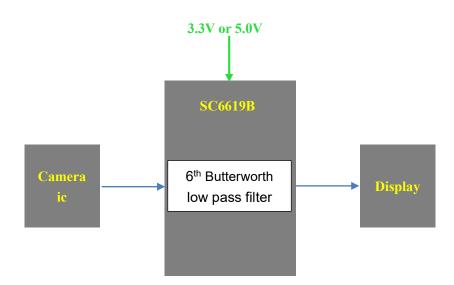
1. Feature

- ☐ 6th order 72MHz(-3dB) Butterworth video filter
- ☐ 6dB DC gain
- ☐ Allowed drive 2 video channels (drive 750hm load)
- □ AC or DC coupled input
- DC & AC coupled Rail to Rail output
- ☐ 3.3V or 5V power supply operation
- ☐ Attenuation -39dB @144MHz
- ☐ Quiescent current (no load): 12mA(3.3V)
- ☐ Chip available in SOT23-6 and SC70-5 Package

2. Applications

- ☐ FHD TVI/AHD/CVI Camera
- ☐ FHD DVD video players
- Digital Set Top Box, etc
- Automotive FHD Camera

3. General Description


The SC6619B is a low power consuming, 6th order Butterworth Filter, it's suitable for the application in DAC reconstruction, such as FHD TVI/AHD/CVI video camera.

SC6619B supports AC or DC coupling input for the filter, it applies 80mV level shift.

The LPF applies 6dB gain in pass band, and it applies attenuation -20dB @100MHz/-39dB@144MHz, the high attenuation is great useful for Improving the quality of the image, reducing the noise;

4. Device Information

Part Number	Package Body Size	
SC6619B	SOT23-6	2.8mm x 2.9mm
SC6619B	SC70-5	2.2mm x 2.45mm

Information furnished by SteadiChips is believed to be accurate and reliable. However, no responsibility is assumed by SteadiChips for its use, or for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SteadiChips.

5. Pin Configuration

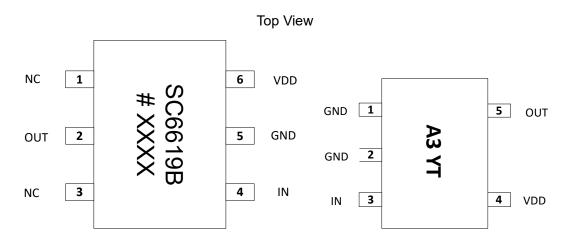


Fig. 1 Pin Definition

Table. 1 Pin Function Description

PIN	NO.	PIN NAME	TYPE	Description
SOT23-6	SC70-5	I III NAME		Description
1		NC	-	Floating Pad
2	5	OUT	Output	Video signal output Pin, typical load is 150ohm, however could drive 75ohm load for 2 channel video.
3		NC	- Floating Pad	
4	3	IN	Input Video signal input Pin, AC coupled in;	
5	1,2	GND	GND	Ground pin. Connect to the most negative supply, ALL GND pads are connected on die.
6	4	VDD	Power supply	Power supply (3.3V/5V) ,connect to positive voltage supply

6. Specifications

6.1. Absolute Maximum Ratings

(Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.)

SYMBOL	PARAMETER	MIN	MAX	UNITS
V _{DD} Power supply		-0.3	6	V
TA	TA Operating ambient Temperature Range		85	°C
TSTG	TSTG Storage Temperature		150	°C

6.2. Recommended Operating Conditions

SYMBOL	PARAMETER	MIN	MAX	UNITS
V_{DD}	Device power supply voltage	2.7	5.5	V
T _A	T _A Operating ambient Temperature Range		85	$^{\circ}\! \mathbb{C}$

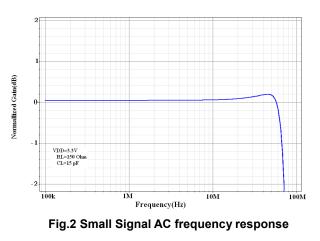
6.3. Electrical Characteristics

1) DC Characteristics (FHD)

Specifications are at TA=+25 $^{\circ}$ C, VDD=3V , RL=150ohm Vin=1Vpp Cin=0.1uF output coupling cap=220uF (unless otherwise noted)

OVALDOL	DADAMETED	TEST SOURITIONS	SPEC			
SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
	IDD VDD operating supply current	VDD=3.3V		15		
IDD		VDD =5V		17		- mA
ΙQ	Quiescent current	VDD =3.3V ,NO input& load		10		mA
		vin=VDD, Output to VDD		72		^
Isc Short to	Short to GND or VDD current	vin=VDD, Output to GND		85		mA
Vols	Vols output offset Voltage	AC coupled Vin=0V, input referred		150		mV
		DC coupled Vin=0V, input referred		100		mV
Vон	Output Voltage High Swing	VDD=3.3V		2.8		V
VOH	Output Voltage High Swing	VDD =5V		4.5		V
Vol	Output Voltage Low Swing	VDD=3.3V/5V		224		mV
Av	Output Voltage Gain			6		dB
DCDD	Power supply rejection ratio	f=50Hz		-58		i.
PSRR Pow	Tower supply rejection ratio	f=1MHz		-39		dB

2) AC Characteristics (FHD)


Specifications are at TA=+25 $^{\circ}$ C, VDD=3V , RL=150ohm Vin=1Vpp Cin=0.1uF output coupling cap=220uF (unless otherwise noted)

OVMDOL	DADAMETED	TEST CONDITIONS	SPEC			
SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS
BW(-1dB)	The Band width of -1dB			68		MHz
BW(-3dB)	The Band width of -3dB			72		MHz
A ++	A.I	f=100MHz		-20		dB
Att	Stop band Attenuation	f=50MHz		0		αБ
dG	Differential Gain			0.1		%
dP	Differential Phase			1		٥
THD	Total Harmonic Distortion	f=50MHz,Vpp=0.6V		-42		dB
SNR	Signal to Noise Ratio*1			75		dB
T _{GD}	Group Delay Variation	f=100k~46MHz		6		ns
Rout	Output Impedance	f=10MHz		1.5		Ω
SR	Slow Rate	Vin=1V, 20%~80%		210		V/us

^{*1:} White Signal, 100 kHz~30MHz, SNR=20*Log (714mV/RMS noise)

6.4. Typical Characteristic Curves

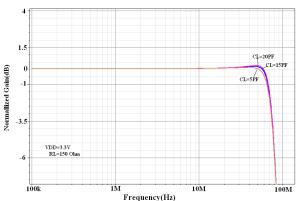
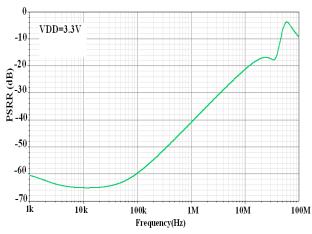



Fig.3 Cload Variation For Gain Vs Frequency

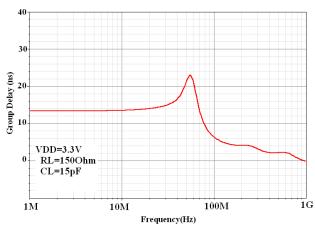
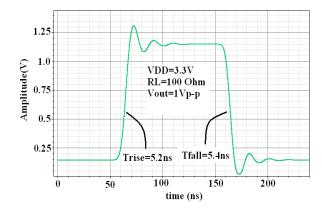



Fig.4 PSRR Vs Frequency

Fig.5 Group Delay Vs Frequency

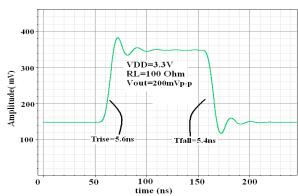


Fig.6 Large Signal Transient Response

Fig.7 Small Signal Transient Response

7. Typical Application

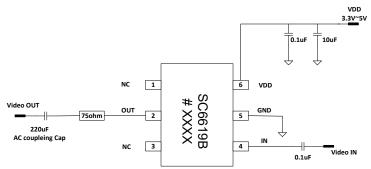


Fig. 8 AC couple Input and AC couple Output Application Circuit

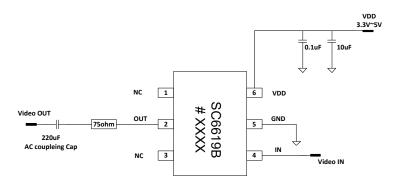


Fig. 9 DC couple Input and AC couple Output Application Circuit

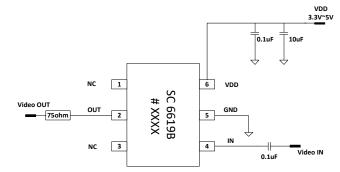


Fig. 10 AC couple Input and DC couple Output Application Circuit

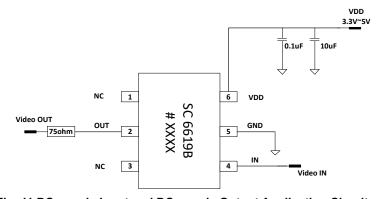
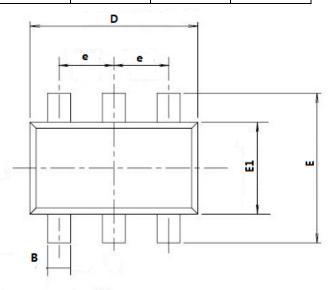
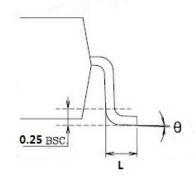
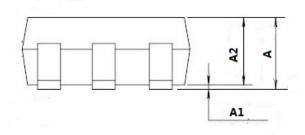
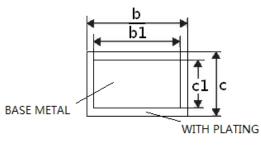


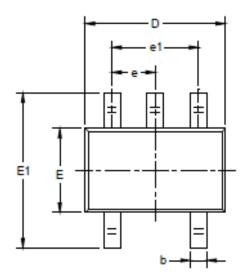
Fig. 11 DC couple Input and DC couple Output Application Circuit

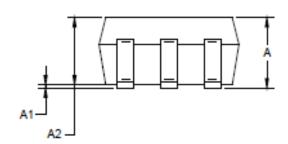


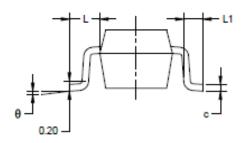

Package Outline Dimensions


SOT23-6- 2.8mmx2.92mm


Symbol		Unit(mm)	
Syllibol	MIN	NOM	MAX
Α	-	-	1.35
A1	0.04	-	0.15
A2	1.00	1.10	1.20
b	0.38	-	0.48
b1	0.37	0.40	0.43
С	0.11	-	0.21
c1	0.10	0.13	0.16
D	2.72	2.92	3.12
E	2.60	2.80	3.00
E1	1.40	1.60	1.80
е	0.95BSC		
θ	0°	-	8°
L	0.30	-	0.60


SECTION B




SC70-5- 2.2mmx2.45mm

Symbol	Unit(mm)			
Syllibol	MIN	NOM	MAX	
Α	0.900	-	1.100	
A1	0.000	-	0.100	
A2	0.900	-	1.000	
b	0.150	-	0.350	
С	0.080	-	0.150	
D	2.000	-	2.200	
E	1.150	-	1.350	
E1	2.150	2.150 - 2.450		
е	-	- 0.65 -		
e1	1.300BSC			
L	0.525REF			
L1	0.260 - 0.460		0.460	
θ	0° - 8°			

EVISION HISTORY

DATE	REVISION	CHANGES	
	1.0	Initial Release.	
2022-4-16	1.3	Update the document template.	

DISCLAIMER

SteadiChips reserves the right to make changes to its products and to discontinue products without notice. The applications information, schematic diagrams, and other reference information included herein is provided as a design aid only and are therefore provided as-is. SteadiChips makes no warranties with respect to this information and disclaims any implied warranties of merchantability or non-infringement of third-party intellectual property rights.

SteadiChips cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an SteadiChips product. No circuit patent licenses are implied.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

STEADICHIPS SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR OTHER CRITICAL APPLICATIONS.

Inclusion of SteadiChips products in critical applications is understood to be fully at the risk of the customer. Questions concerning potential risk applications should be directed to SteadiChips Co., Ltd.

SteadiChips semiconductors are typically used in power supplies in which high voltages are present during operation. High-voltage safety precautions should be observed in design and operation to minimize the chance of injury.

Trademark Information

© 2020 SteadiChips Co., Ltd. All rights reserved. SteadiChips is the trademark of SteadiChips Co., Ltd. All other trademarks and registered trademarks are the property of their respective companies.

Contact Information

Web: http://www.steadichips.com

E-mail: sales@steadichips.com

Phone: (86) 510-81819665 **Fax:** (86) 0510-81819676

SteadiChips Co., Ltd. 1402 Jingyuan International Building A, No. 2 Xiangjiang Road, Wuxi, China 214142