

1 Features

- H-Bridge Motor Driver
 - Drives 1-DC Motor or Other Loads
 - Low saturation voltage: 0.46V typ. At 400mA
- Low operating Current
- Low voltage operation:
 - $-V_{CCmin} = 1.8V$
- Low input current
- High output sinking and driving capability
- Small Package and Footprint
 - SOT23-6
- Protection Features
 - Thermal Shutdown(TSD)

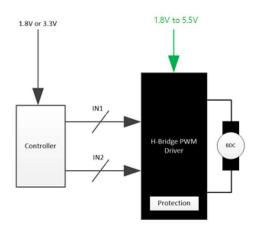
2 Applications

- Cameras Module
- Voice Coil Motor
- Consumer Products
- Toys
- Piezo-actuator
- Other DC Motor Actuator

3 Description

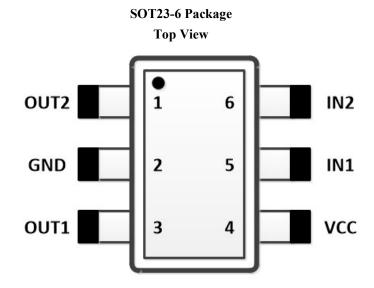
The SC8906 provides an integrated motor driver solution for cameras, consumer products, toys, and other low-voltage or battery-powered motion control applications. The device has one-channel H-bridge driver, and drives one DC motor, as well as other devices like shutter or iris on cameras. An internal charge pump generates gate drive voltages.

The SC8906 supplies up to 1.0-A of output current. The operates on a motor power supply voltage from 1.8 V to 5.5 V.


The SC8906 device has a PWM (IN/IN) input interface. Internal shutdown functions are provided for overtemperature.

The SC8906 is packaged in a 6-pin SOT23 package.

Device Information


PART NUMBER	PACKAGE	BODY SIZE (NOM)	
SC8906	SOT23 (6)	2.90 mm × 1.60 mm	

Simplified Schematic

4 Pin Configuration and Functions

Pin Functions

1 11 1 11111111111111111111111111111111						
PIN		ТҮРЕ	DESCRIPTION	EXTERNAL COMPONENTS OR CONNECTIONS		
NAME	NO.	ITE	DESCRIPTION	EATERNAL COMPONENTS OR CONNECTIONS		
POWER AND GROUND						
GND	2	PWR	Device ground	This pin must be connected to the PCB ground		
VCC	5	PWR	Motor supply	Bypass to GND with a 0.1uF(minimum) ceramic capacitor		
CONTROL						
IN1	4	I	Bridge input 1	Logic high sets OUT1 high, Internal pulldown resistor		
IN2	3	I	Bridge input 2	Logic high sets OUT2 high, Internal pulldown resistor		
ОИТРИТ	ОИТРИТ					
OUT1	6	О	Bridge output 1	Comments and the second		
OUT2	1	О	Bridge output 2	Connect to motor winding		

5 Specifications

5.1 Absolute Maximum Ratings

 $\mathsf{See}^{(1)(2)}$

		MIN	MAX	UNIT
	Power supply voltage, VCC	-0.3	5.5	V
	Outputs, OUT1, OUT2	-0.3	VCC+0.3	V
	Digital input pin voltage, IN1, IN2	-0.5	VCC+0.3	V
	Peak motor drive output current		Internally limited	
T _J	Operating junction temperature	-40	150	°C
T _{stg}	Storage temperature	-65	150	℃
	Lead Temperature (Soldering, 10sec)		260	℃

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
V _{CC}	Motor power supply voltage	1.8		5.5	V
V _{IN}	Logic level input voltage	0		VCC+0.3	V
I _{OUT}	Continuous motor drive output current	0		1.0	A
T _A	Operating ambient temperature	-40		85	°C

5.3 Thermal Information

THERMAL METRIC	VALUE	UNIT
R _{JA} Junction-to-ambient thermal resistance	99.1	°C/W
R _{JC} Junction-to-thermal resistance	66.9	°C/W

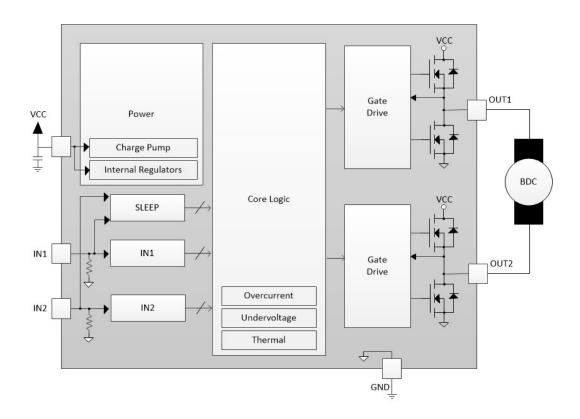
⁽²⁾ All voltage values are with respect to network ground terminal.

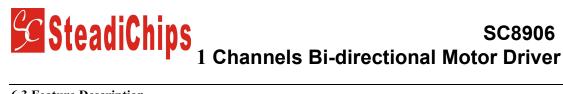
5.4 Electrical Characteristics

 $T_A = 25$ °C, VCC = 3.0 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER S	SUPPLY					
I_{DD0}	VCC sleep mode supply current	V _{IN1,IN2} =0V		0.10	2.0	μΑ
I_{DD1}	VCC operating supply current	$V_{IN1,IN2} \neq 0V$		0.25	0.5	mA
V	VCC undervoltage lockout voltage	V _{CC} rising			1.8	V
V_{UVLO}	vec undervoltage lockout voltage	e V _{CC} falling			1.7	V
LOGIC-L	EVEL INPUTS					
V_{IL}	Input low voltage		-0.3		0.2 * V _{CC}	V
V_{IH}	Input high voltage		0.5 * V _{CC}		V _{CC} +0.3	V
I _{IL}	Input low current	V _{IN} =0	-5		5	μΑ
I _{IH}	Input high current	V _{IN} =3V			50	μΑ
R_{PD}	Pulldown resistance			100		ΚΩ
H-BRIDG	E FETS (T _J = 25°C)					
		I _{OUT} =200mA		0.28	0.4	V
V_{OUT}	Output Voltage(upper + lower)	I _{OUT} =400mA		0.46	0.7	V
		I _{OUT} =200mA,VCC=1.8V		0.55	1.0	V
I_{OFF}	OFF-state leakage current	V _{OUTx} =0V			±200	nA
PROTECT	ΓΙΟΝ CIRCUITS		•			
t _{TSD} ⁽¹⁾	Thermal shutdown temperature	Die temperature	150	160	190	°C

⁽¹⁾ Not tested in production; limits are based on characterization data


6 Detailed Description


6.1 Overview

The SC8906 device is an H-bridge driver that can drive one DC motor or other devices like solenoids. The outputs are controlled using a PWM interface (IN1/IN2).

This device greatly reduces the component count of motor driver systems by integrating the necessary driver FETs and FET control circuitry into a single device. In addition, the SC8906 device adds protection features beyond traditional discrete implementations: undervoltage lockout, overcurrent protection, and thermal shutdown.

6.2 Functional Black Diagram

6.3 Feature Description

6.3.1 Bridge Control

The SC8906 device is controlled using a PWM input interface, also called an IN/IN interface. Each output is controlled by a corresponding input pin.

Table 1 shows the logic for the SC8906 device.

Table 1. SC8906 Device Logic

IN1	IN2	OUT1	OUT2	MODE
L	L	OFF	OFF	Standly
Н	L	Н	L	Forward
L	Н	L	Н	Reverse
Н	Н	_	-	Keep the previous mode
11				(Forward/Reverse)

Note:" - " indicates a "don't care" input

6.3.2 Power Supplies and Input Pins

The input pins can be driven within the recommended operating conditions with or without the VCC. No leakage current path exists to the supply. Each input pin has a weak pulldown resistor (approximately $100 \ k\Omega$) to ground.

6.3.3 Protection Circuits

The SC8906 is fully protected against VCC undervoltage, overcurrent, and overtemperature events.

VCC undervoltage lockout

If at any time the voltage on the VCC pin falls below the undervoltage lockout threshold voltage, all FETs in the H-bridge are disabled. Operation resumes when the VCC pin voltage rises above the UVLO threshold.

Overcurrent protection (OCP)

An analog current-limit circuit on each FET limits the current through the FET by removing the gate drive. If this analog current limit persists for longer than tDEG, all FETs in the H-bridge are disabled. Operation resumes automatically after tRETRY has elapsed. Overcurrent conditions are detected on both the high-side and low-side devices. A short to the VCC pin, GND, or from the OUT1 pin to the OUT2 pin results in an overcurrent condition.

Thermal shutdown (TSD)

If the die temperature exceeds safe limits, all FETs in the H-bridge are disabled. After the die temperature falls to a safe level, operation automatically resumes.

Table 2. Fault Behavior

FAULT	CONDITION	H-BRIDGE	INTERNAL CIRCUIT	RECOVERY
VCC undervoltage(UVLO)	V _{DD} <1.7V	Disabled	Disabled	V _{DD} >1.8V
Overcurrent(OCP)	I _{OUT} >1.2A(MIN)	Disabled	Operating	t _{ocr}
Thermal Shutdown(TSD)	T _j >150°C(MIN)	Disabled	Operating	T _J <150°C

Steadichips 1 Channels Bi-directional Motor Driver

7 Application and Implementation

NOTE

Information in the following applications sections is not part of the SteadiChips Component specification, and SteadiChips does not warrant its accuracy or completeness. SteadiChips's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

7.1 Application Information

The SC8906 device is device is used to drive one DC motor or other devices like solenoids. The following design procedure can be used to configure the SC8906 device.

7.2 Typical Application

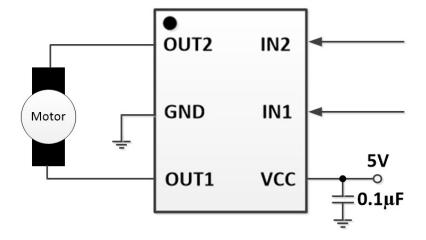
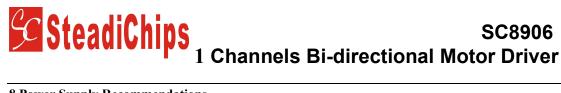



Figure 2. Schematic of SC8906 Application

8 Power Supply Recommendations

8.1 Bulk Capacitance

Having appropriate local bulk capacitance is an important factor in motor-drive system design. It is generally beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.

The amount of local capacitance needed depends on a variety of factors, including:

- The highest current required by the motor system
- The power-supply capacitance and ability to source current
- The amount of parasitic inductance between the power supply and motor system
- The acceptable voltage ripple
- The type of motor used (brushed dc, brushless dc, stepper)
- The motor braking method

The inductance between the power supply and motor drive system limits the rate at which current can change from the power supply. If the local bulk capacitance is too small, the system responds to excessive current demands or dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage remains stable and high current can be quickly supplied.

The data sheet generally provides a recommended value, but system-level testing is required to determine the appropriate size of bulk capacitor.

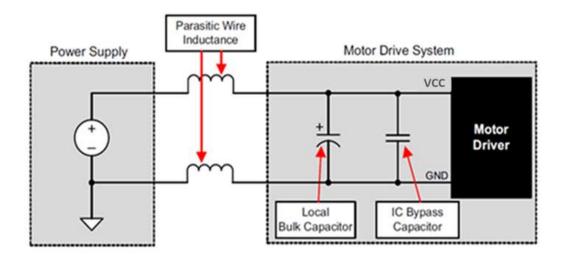


Figure 3. Example Setup of Motor Drive System With External Power Supply

The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases when the motor transfers energy to the supply

SC8906

10

1 Channels Bi-directional Motor Driver

9 Layout

9.1 Layout Guidelines

The VCC pins should be bypassed to GND using low-ESR ceramic bypass capacitors with a recommended value of $10~\mu F$ rated for the VM and VCC supplies. These capacitors should be placed as close to the VCC pins as possible with a thick trace or ground plane connection to the device GND pin.

9.2 Layout Example

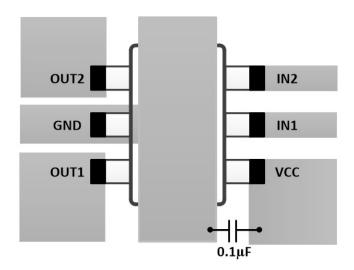


Figure 4. Simplified Layout Example

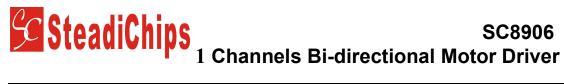
9.3 Power Dissipation

Power dissipation in the SC8906 is dominated by the power dissipated in the output FET resistance, or $R_{DS(on)}$. Average power dissipation when running both H-bridges can be roughly estimated by Equation 1:

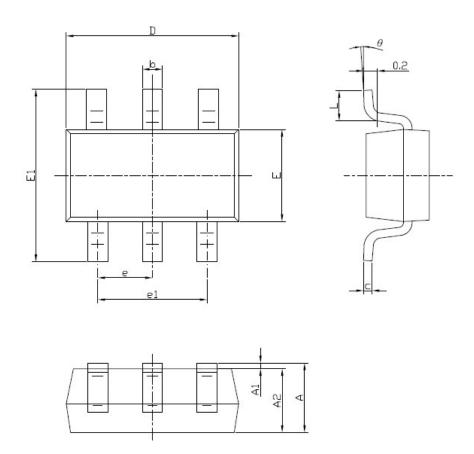
$$P_{TOT} = R_{DS(ON)} \times (I_{OUT(RMS)})^2$$
 (1)

where

- $\bullet \quad \ P_{TOT} \ is \ the \ total \ power \ dissipation$
- $R_{DS(ON)}$ is the resistance of the HS plus LS FETs
- ullet I_{OUT(RMS)} is the RMS or DC output current being supplied to the load


The maximum amount of power that can be dissipated in the device is dependent on ambient temperature and heatsinking.

NOTE


The value of $R_{\text{DS(ON)}}$ increases with temperature, so as the device heats, the power dissipation increases.

The SC8906 device has thermal shutdown protection. If the die temperature exceeds approximately 150° C, the device is disabled until the temperature drops to a safe level.

Any tendency of the device to enter thermal shutdown is an indication of either excessive power dissipation, insufficient heatsinking, or too high an ambient temperature.

10 Package Outline

Comple ed	Dimensions	n Millimeters	Dimensions In Inches	
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	(BSC)	0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°